MANAGEMENT BRIEFING

METHOD OF DESIGN FOR GROUND COOLANT SYSTEM TO MLP-1, -2, AND -3; OPF HB'S 1 AND 2; SLF; SLS; AND WSSH

BACKGROUND - S70-0508 REPLACEMENT DESIGN

- LATE 1985 DESIGN TO INVESTIGATE S70-0508 PROBLEMS AND FINAL LONG-RANGE SOLUTIONS PER DIRECTION FROM C. MARS
- EARLY 1986 S70-0508 DESIGN RESPONSIBILITY TURNED OVER TO LSOC FROM RI
- MID 1986 TO 1987 LSOC DE AND OPS FIELD TESTED S70-0508'S AND SUMMARIZED FINDINGS IN STUDY KSCL-3201-0060 RECOMMENDING INTERIM S70-0508 FIXES AND DEVELOPMENT OF A NEW GROUND COOLANT SYSTEM
- JUNE 1987 CCBD ISSUED TO CREATE 30% DESIGN FOR REPLACEMENT OF S70-0508'S ON PAD AND TO CREATE S70-0508 MOD DRAWINGS
- JUNE 1987 TO MARCH 1988 BIWEEKLY TEAM MEETINGS WITH NASA DE, OPS, SAFETY, AND LSOC DE, OPS, AND SAFETY HELD TO CREATE NEW CONCEPT
- DECEMBER 1987 LSOC DE RELEASED S70-0508 MOD DRAWING 80K50536
- JANUARY 1988 S70-0508 MODS PLACED ON HOLD DUE TO LACK OF FUNDING
- MARCH 1988 IN-HOUSE NEW DESIGN AT 30% TO 45% LEVEL PLACED ON HOLD DUE TO LACK OF FUNDING

BACKGROUND - S70-0508 REPLACEMENT DESIGN (CONT.)

- JUNE 1989 REQUEST TO LSOC ACTIVATION TO UTILIZE NEW DESIGN AS A PROTOTYPE AT OPF HB-3
- AUGUST TO SEPTEMBER 1989 TWO S70-0508'S MODIFIED; REMAINDER PUT ON HOLD DUE TO LACK OF FUNDING
- OCTOBER 1989 IMPLEMENTATION OF NEW DESIGN FOR OPF HB-3 APPROVED BY KSC.
- DECEMBER 1989 MEETING REPRESENTING LONG-RANGE S70-0508 REPLACE-MENT PRESENTED TO LEVEL I (REFERENCE CR NO. S50483D)
- JUNE 1990 TCTI PREPARED TO MODIFY TWO ADDITIONAL S70-0508'S (PLACED ON HOLD DUE TO LACK OF FUNDING)
- JULY 1990 NEW OPF HB-3 DESIGN COMPLETE
- OCTOBER 1990 FPC ESTABLISHED FOR NEW SYSTEM
- NOVEMBER 1990 NEW SYSTEM WELL UNDER CONSTRUCTION
- DECEMBER 1990 REVISE JUNE 1990 TCTI TO ACCOMPLISH MODIFICATION OF THREE S70-0508'S
- MAY 1991 NEW SYSTEM TO POWER UP AT KSC
- SEPTEMBER 1991 NEW SYSTEM TO MEET OPF HB-3 ORD

GROUND COOLANT UNIT ALLOCATION

USE LOCATION	ACTUAL NO.	COMMENTS
PAD A PAD B OPF-1	2 2-1/2	RECENTLY REFURBISHED UNITS
OPF-2 SLF	1/2 1 1	
DFRF WSSH	2 1	
PALMDALE	2	UNITS DO NOT HAVE LPS CAPABILITY
VAB-MBMR OPF-3	1 0	USED FOR MAINTENANCE
TOTAL	13	

GCU SUPPORT RECORD DURING HIGH LAUNCH PERIOD

- THREE TO FOUR UNITS CONSTANTLY UNDER REPAIR
- GCU'S WERE CONSTANTLY BEING MOVED BETWEEN SITES TO SUPPORT ORBITER TESTING
- THERE WERE TIMES WHEN ALL IN-COMMISSION UNITS WERE SUPPORTING TESTS WITH INSUFFICIENT BACK-UPS/COMPONENTS SPARES TO IMPROVE IN-COMMISSION RATE
- BACK-UP REQUIREMENTS DEVELOPED AS A MATTER OF LOW RELIABILITY -NOT OMRSD REQUIREMENTS

NOTE:

IT WAS NOT UNCOMMON TO WAIT 6 MONTHS FOR HIGH USAGE COMPONENTS (LIGHTS, SIGNAL CONDITIONERS, VALVES, QD'S, ETC.)

SUMMARY OF KSCL-3201-0060, S70-0508 RELIABILITY IMPROVEMENT AND 80K50611, MOD DRAWING

REFRIGERATION MODULE

- PROVIDE PERMANENT INSTRUMENTATION FOR ADJUSTMENT AND TROUBLE SHOOTING
- REPLACE THE BELT-DRIVEN CONDENSER COIL FAN WITH A TWO-SPEED, DIRECT DRIVE, HEAD-PRESSURE-CONTROLLED FAN
- PROVIDE A SUCTION ACCUMULATOR TO PREVENT LIQUID R-22 FROM RETURNING TO THE COMPRESSOR
- REPLACE THE REFRIGERANT RECEIVER WITH A RECEIVER EQUIPPED WITH A SIGHT GLASS
- REPLACE THE LIQUID LINE SIGHT GLASS WITH A SEE-THRU-TYPE SIGHT GLASS

CIRCULATION MODULE

- REMOVE THE EXISTING STORAGE CABINET FOR BETTER COMPONENT ACCESS
- PROVIDE WEATHER-SEALED BLAST COVERS FOR THE INSTRUMENT PANELS

NOTE:

ALL WORN COMPONENTS ARE TO BE REFURBISHED DURING FPC

Space Operations Company

MODIFIED S70-0508 SUMMARY

- THE TWO MODIFIED S70-0508'S HAVE PROVEN TO BE MUCH MORE PREDICTABLE AND RELIABLE, AND SUCCESSFULLY SUPPORTED (WITHOUT INCIDENT) ALL THREE LAUNCHES IN WHICH THEY WERE USED *
- THE BASIC S70-0508 DESIGN (HEAT LOAD CAPACITY) IS STILL OVER REQUIREMENTS AND CANNOT HANDLE THE WIDE RANGE OF HEAT LOADS REQUIRED FOR LAUNCH
- THE LONG-TERM RELIABILITY OF THE MODIFIED S70-0508 UNITS IS LOW
- MODIFICATION OF MORE S70-0508'S PENDING FUNDING
- * THERE IS AN R-22 RECEIVER CERTIFICATION PROBLEM WHICH HAS BEEN WAIVED FOR STS-35. REPLACEMENT RECEIVERS ARE ON ORDER

GROUND COOLANT UNITS FOR ORBITER PROCESSING

PLAN

 PHASE OUT S70-0508 UNITS AND REPLACE WITH FIXED GROUND COOLING SYSTEMS

PRESENT

INSTALL NEW GROUND COOLING UNITS (S70-0509/0510/1203) AT OPF HB-3
TO IMPLEMENT THE DESIGN AND FUNCTIONALLY VERIFY THE SYSTEM

REQUESTED

- ADD THE SAME EQUIPMENT TO THE MLP'S WHICH WILL ELIMINATE CURRENT EQUIPMENT FOR VAB/PAD LOCATIONS AND IMPROVE RELIABILITY
- ADD THE SAME EQUIPMENT TO OPF-1 AND OPF-2 FACILITIES
- ADD SIMILAR EQUIPMENT TO THE LANDING SITES UTILIZING TRANSPORTERS
- INTERIM FIX MODIFY ADDITIONAL S70-0508'S FOR BETTER MAINTAINABILITY AND ORBITER SUPPORT AT PADS/OPF

NEW GROUND COOLANT SYSTEM FEATURES

- THE NEW GROUND COOLANT SYSTEM HAS MANY ENHANCEMENTS OVER THE S70-0508'S. IT WILL BE SIMPLER TO MAINTAIN AND OPERATE AND USES A STATE-OF-THE-ART CONTROL SYSTEM
- A SUMMARY OF THESE FEATURES IS ATTACHED FOR REFERENCE

KSC FORM 29-43 (REV. 4/86)

MLP GROUND COOLANT SYSTEM FLOOR PLAN

MLP GROUND COOLANT SYSTEM FLOOR PLAN

DECEMBER 1990 GND_COOL/ECLSS_PLAN

MLP-1, -2, AND -3 TASKS

- EQUIPMENT
 - DESIGN EXISTS
 - REQUIRES TCTI TO START FABRICATION
- MECHANICAL INSTALLATION DESIGN
 - MODIFY MLP COMPARTMENTS TO ACCOMMODATE GSE INSTALLATION
 - REMOVE FALSE FLOOR IN COMPARTMENT 15B
 - ADD ISOLATION MOUNTS
 - MODIFY FLUID DISTRIBUTION SYSTEM
- ELECTRICAL INSTALLATION DESIGN
 - PROVIDE NEW HIM'S
 - PROVIDE HARDWIRE SAFING PANEL IN FIRING ROOMS
 - ADD NEW CABLING TO GSE
 - PROVIDE COMPARTMENT 15B CONTROL STATION

MLP-1, -2, AND -3

<u>DESIGN</u>		
MECHANICAL	4 MO	640 MH
ELECTRICAL	6 MO	1,000 MH
DRAFTING	4 MO	640 MH
OMD	6 MO	500 MH

MLP-1, -2, AND -3

COSTS

DESIGN	2,780 MH x \$33/MH	= \$ 91,740
EQUIPMENT	\$1.1 MILLION/MLP	= \$3,300,000
FPC-INSTL	\$350,000/MLP	= \$1,050,000
CHECKOUT	480 MH/MLP x \$33/MH	= \$ 47,520
SPARE LRU (509/510's)	\$400,000	= \$ 400,000
HIMS & OTHER	\$500,000/MLP (IF NEEDED)	= \$1,500,000 *
TOTAL		= \$6,389,260

^{*} MAYBE REDUCED TO \$360,000 IF CURRENTLY AVAILABLE RUGGEDIZED VAFB HIMS ARE USED.

INSTALLATION

1-1/2 YEARS AFTER COMPLETION OF DESIGN BASED ON WORKING ALL THREE MLP'S IN A PARALLEL EFFORT. GSE TO START FABRICATION AT START OF INSTALLATION DESIGN.

THESE ROM COST ESTIMATES ARE PROVIDED FOR PLANNING/INFORMATION PURPOSES ONLY, AND DO NOT CONSTITUTE COST AND PRICING DATA AND ARE NOT INTENDED TO BE A BASIS FOR NEGOTIATING BETWEEN LSOC AND NASA. IT IS NOT AN OFFER TO PERFORM THE SUBJECT WORK, BUT REPRESENTS AN ESTIMATE BASED ON OUR CURRENT UNDERSTANDING OF THE TASK.

OPF HB-1 AND HB-2 TASKS

- EQUIPMENT
 - DESIGN EXISTS
 - REQUIRES TCTI TO START FABRICATION
- MECHANICAL INSTALLATION SYSTEM
 - MODIFY EXISTING FLUID DISTRIBUTION SYSTEM
- ELECTRICAL INSTALLATION SYSTEM
 - PROVIDE PATCHING AND CABLE INSTALLATION
- BUILDING
 - DESIGNED AND CONSTRUCTED USING C of F FUNDING

OPF HB-1 AND HB-2

DESIGN

MECHANICAL	2 MO	320 MH
ELECTRICAL	2 MO	320 MH
DRAFTING	2 MO	320 MH
OMD	1 MO	100 MH

(EXCLUDES BUILDING DESIGN AND CONSTRUCTION)

OPF HB-1 AND HB-2

EQUIPMENT COSTS

DESIGN	1,060 MH x \$33/MH	= \$	34,980
EQUIPMENT	\$900,000/HB	= \$1	,800,000
FPC-INSTL	\$200,000/HB	= \$	400,000
CHECKOUT	480 MH/HB x \$33/MH	= \$_	31,680
TOTAL		= \$2	2.266.660

INSTALLATION

9 MONTHS AFTER BUILDINGS ARE COMPLETE

THESE ROM COST ESTIMATES ARE PROVIDED FOR PLANNING/INFORMATION PURPOSES ONLY, AND DO NOT CONSTITUTE COST AND PRICING DATA AND ARE NOT INTENDED TO BE A BASIS FOR NEGOTIATING BETWEEN LSOC AND NASA. IT IS NOT AN OFFER TO PERFORM THE SUBJECT WORK, BUT REPRESENTS AN ESTIMATE BASED ON OUR CURRENT UNDERSTANDING OF THE TASK.

LANDING SITES TASKS

- EQUIPMENT
 - EXISTING DESIGN FOR INDOOR USE MUST BE MODIFIED
- MECHANICAL
 - ENCLOSE UNITS
 - PROVIDE AIR-COOLED CONDENSER
 - MODIFY TRAILER INSTALLATION
 - MODIFY FLUID DISTRIBUTION SYSTEM
- ELECTRICAL
 - PROVIDE NEW GENERATOR (TBD)
 - PROVIDE CABLES
 - PROVIDE MODIFIED CONTROL SYSTEM

NOTE:

IT MAY BE FEASIBLE TO KEEP THE S70-0508'S AT THE LANDING SITES

LANDING SITES

DESIGN

MECHANICAL	8 MO	1,280 MH
ELECTRICAL	6 MO	1,000 MH
DRAFTING	5 MO	800 MH
OMD	6 MO	500 MH

LANDING SITES

COSTS

DESIGN	3,580 MH x \$33/MH	= \$ 118,140
EQUIPMENT	\$1.1 MILLION/TRL	= \$3,300,000
FPC-INSTL	\$200,000/TRL	= \$ 600,000
CHECKOUT	480 MH/TRL x \$33/MH	= \$ 47,520
SPARE LRU	\$400,000	= \$ 400,000
TOTAL		= \$4,465,660

INSTALLATION

6 MONTHS AFTER COMPLETION OF DESIGN

THESE ROM COST ESTIMATES ARE PROVIDED FOR PLANNING/INFORMATION PURPOSES ONLY, AND DO NOT CONSTITUTE COST AND PRICING DATA AND ARE NOT INTENDED TO BE A BASIS FOR NEGOTIATING BETWEEN LSOC AND NASA. IT IS NOT AN OFFER TO PERFORM THE SUBJECT WORK, BUT REPRESENTS AN ESTIMATE BASED ON OUR CURRENT UNDERSTANDING OF THE TASK.

Shuttle Processing Contractor

NEW GROUND COOLANT SYSTEM FEATURES

- HANDLES A WIDE RANGE OF HEAT LOADS
- BUILT-IN REDUNDANCY TO SUPPORT LAUNCH ACTIVITY
- REFRIGERATION SYSTEM IS BASED ON CONSTANTS WHICH PROVIDES A SIMPLE SYSTEM THAT IS EASY TO CALIBRATE AND TROUBLE SHOOT
- SYSTEM USES PROVEN KSC COMPONENTS
- SYSTEM IS DESIGNED PER KSC STANDARDS
- SYSTEM HAS OPEN PALLETIZED CABINETS PROVIDING EASY ACCESS FOR MAINTENANCE
- TRANSDUCERS HAVE BUILT-IN CALIBRATION PORTS SHORTENING SYSTEM DOWNTIME
- INLET PIPING TO UNITS ARE PROVIDED FROM OVERHEAD, ELIMINATING TRIPPING HAZARDS.
- SYSTEM IS INSTALLED IN A CONTROLLED ENVIRONMENT, REDUCING DETERIORATION, AND ADEQUATE SPACE AROUND GSE IS PROVIDED TO ENHANCE SERVICING AND OPERATION
- SYSTEM HAS REMOTE FILL PORTS AND OVERHEAD MONORAILS TO AID IN SERVICING

NEW GROUND COOLANT SYSTEM FEATURES (CONT.)

- REFRIGERATION SYSTEM USES WATER-COOLED CONDENSERS, ELIMINATING ENVIRONMENTAL FLUCTUATIONS AND MECHANISM FAILURES ASSOCIATED WITH AIR-COOLED CONDENSERS
- ALL VALVES AND CONTROLS ARE AT A SINGLE LOCATION ON EACH UNIT
- SYSTEM IS OF MODULAR CONSTRUCTION; COMPONENTS CAN BE REPLACED WITH MINIMAL DOWNTIME
- ALL FITTINGS ARE KC OR WELDED, ELIMINATING LEAKS
- THERE ARE NO ORIGINAL EQUIPMENT MANUFACTURE COMPONENTS IN THE UNITS, SAVING LOGISTICS COSTS
- REFRIGERATION UNITS HAVE NO COMPLEX LOAD CONTROL SUBSYSTEMS

NEW GROUND COOLANT SYSTEM FEATURES (CONT.)

- REFRIGERATION SYSTEM IS INSTALLED IN SERIES PROVIDING REDUNDANT OPERATION WHICH PREVENTS ORBITER SUPPLY TEMPERATURE FLUCTUA-TION AND OPERATION INTERVENTION DURING A POSSIBLE REFRIGERATION UNIT FAILURE. THIS FEATURE WILL SIMPLIFY LAUNCH COMMIT CRITERIA
- SYSTEM USES LIGHTER, MORE RELIABLE 4-TON COMPRESSORS INSTEAD OF 20-TON COMPRESSORS THAT EXIST IN THE PRESENT SYSTEM
- SYSTEM HAS COMPLETE SUPPORT DOCUMENTATION WHICH ALLOWS UNITS TO BE MODIFIED FOR UNKNOWN FUTURE REQUIREMENTS AND ENHANCES OPERATIONS OF THE GSE
- SYSTEM IS CONSIDERABLY LESS EXPENSIVE IN FABRICATION THAN THE PRESENT GSE
- SYSTEM HAS AUTOMATIC PUMP DOWN CAPABILITY

CONTROLS

- STATE OF THE ART
- SYSTEM IS PICTORIAL, PROVIDING INSTANT RECOGNITION OF PERFORMANCE
- CONTROLS ARE MODULAR, ELIMINATING DOWNTIME
- TROUBLE SCREENS INSTANTLY IDENTIFY PROBLEMS (SOURCES AND LOCATIONS) AND PROVIDE DIRECTIONS ON HOW TO CORRECT THEM
- REAL-TIME PERFORMANCE CALCULATIONS CAN BE PERFORMED AND CONTINUOUSLY DISPLAYED
- SYSTEM HAS DATA RECALL CAPABILITY PROVIDING A SIGNATURE OF THE MACHINE'S PERFORMANCE, HISTORY, AND RELIABILITY
- CONTROLS ARE EXPANDABLE
- CONTROLS ARE COMPACT
- MONITOR IS NEMA IV CONSTRUCTION
- SYSTEM HAS LPS REDUNDANCY
- CONTROL FUNCTIONS ARE MORE ACCURATE THAN THE EXISTING EQUIPMENT

CONTROLS (CONT.)

- THE CONTROLS DO NOT TAKE AWAY EXISTING CAPABILITY; RATHER, THEY ENHANCE IT
- SYSTEM HAS FULL MANUAL CAPABILITY AND FULL AUTOMATIC CAPABILITY
- SIMPLE OPERATION AS EASY AS A REFRIGERATOR
- SYSTEM HAS PASSWORD-LEVEL ENTRY PREVENTING INEXPERIENCED PERSONNEL FROM MANGLING THE EQUIPMENT
- CAPABILITY EXISTS TO MONITOR SYSTEM REMOTELY AND INEXPENSIVELY BY TELEPHONE LINE
- UNITS HAVE INDEPENDENT CONTROLS FOR REDUNDANCY
- PROGRAMS ARE STORED IN NON-VOLATILE MEMORY AND WILL BE CONTROLLED BY TDC RELEASE
- SYSTEM OPERATION WILL BE BY PICTURE AND BUTTON AND WILL NOT REQUIRE COMPUTER KNOWLEDGE
- ABNORMAL CONDITIONS WILL BE CLEARLY DISPLAYED AND DOCUMENTED
- SYSTEM HISTORY CAN BE STORED AND RECALLED ON THE DISPLAY TO AID DIAGNOSTICS

DECEMBER 1990

Space Operations Company

MANAGEMENT BRIEFING ADDENDUM

METHOD OF DESIGN FOR GROUND COOLANT SYSTEM TO PAD A AND PAD B

PLAN - PAD SURFACE

PAD A AND B

- EQUIPMENT
 - DESIGN EXISTS
 - REQUIRES TCTI TO START FABRICATION
- MECHANICAL INSTALLATION DESIGN
 - MODIFY FLUID DISTRIBUTION SYSTEM
- ELECTRICAL INSTALLATION DESIGN
 - USE EXISTING HIM SPACE
 - PROVIDE HARDWIRE SAFING PANEL IN FIRING ROOMS (TBD)
 - ADD NEW CABLING TO GSE
- BUILDING
 - DESIGNED AND CONSTRUCTED USING C of F FUNDING

PAD A AND B

INSTALLATION DESIGN

MECHANICAL	3 MO	480 MH
ELECTRICAL	4 MO	600 MH
DRAFTING	4 MO	640 MH
OMD	6 MO	500 MH

PAD A AND B

COSTS

_				
	DESIGN	2,220 MH x \$33/MH	= \$	73,260
	EQUIPMENT	\$1.1 MILLION/PAD	= \$2	2,200,000
	FPC-INSTL	\$250,000/PAD	= \$	500,000
	CHECKOUT	480 MH/PAD x \$33/MH	= \$	31,680
	SPARE LRU (509/510's)	\$400,000	= \$	400,000
	ELECTRICAL MISC	\$100,000/PAD	<u>= \$</u>	200,000
	TOTAL		= \$3	3,404,940

INSTALLATION

9 MONTHS AFTER BUILDINGS ARE COMPLETE. GSE TO START FABRICATION AT START OF INSTALLATION DESIGN.

THESE ROM COST ESTIMATES ARE PROVIDED FOR PLANNING/INFORMATION PURPOSES ONLY, AND DO NOT CONSTITUTE COST AND PRICING DATA AND ARE NOT INTENDED TO BE A BASIS FOR NEGOTIATING BETWEEN LSOC AND NASA. IT IS NOT AN OFFER TO PERFORM THE SUBJECT WORK, BUT REPRESENTS AN ESTIMATE BASED ON OUR CURRENT UNDERSTANDING OF THE TASK.

Shuttle Processing Contractor

BUILDING

D	E	S	I	G	N

STRUCTURAL	400 MH x \$33/MH	= \$	13,200
MECHANICAL	200 MH x \$33/MH	= \$	66,000
ELECTRICAL	200 MH x \$33/MH	= \$	66,000

TOTAL = \$145,200/PAD

FPC

STRUCTURAL	= \$	147,000
MECHANICAL	= \$	20,000
ELECTRICAL	<u>= \$</u>	20,000
TOTAL	= \$	187,000/PAD

TOTAL/PAD = \$332,200

TOTAL PAD A AND PAD B = \$664,400

THESE ROM COST ESTIMATES ARE PROVIDED FOR PLANNING/INFORMATION PURPOSES ONLY, AND DO NOT CONSTITUTE COST AND PRICING DATA AND ARE NOT INTENDED TO BE A BASIS FOR NEGOTIATING BETWEEN LSOC AND NASA. IT IS NOT AN OFFER TO PERFORM THE SUBJECT WORK, BUT REPRESENTS AN ESTIMATE BASED ON OUR CURRENT UNDERSTANDING OF THE TASK.

